Category Archives: Blog

GRASS GIS 7.0.1 released – 32 years of GRASS GIS

What’s new in a nutshellgrass7_logo_500px

This release addresses some minor issues found in the first GRASS GIS 7.0.0 release published earlier this year. The new release provides a series of stability fixes in the core system and the graphical user interface, PyGRASS improvements, some manual enhancements, and a few language translations.

This release is the 32nd birthday release of GRASS GIS.

New in GRASS GIS 7: Its new graphical user interface supports the user in making complex GIS operations as simple as possible. A new Python interface to the C library permits users to create new GRASS GIS-Python modules in a simple way while yet obtaining powerful and fast modules. Furthermore, the libraries were significantly improved for speed and efficiency, along with support for huge files. A lot of effort has been invested to standardize parameter and flag names. Finally, GRASS GIS 7 comes with a series of new modules to analyse raster and vector data, along with a full temporal framework. For a detailed overview, see the list of new features. As a stable release 7.0 enjoys long-term support.

Source code download:

Binaries download:

More details:

See also our detailed announcement:

  http://trac.osgeo.org/grass/wiki/Grass7/NewFeatures (overview of new stable release series)First time users may explore the first steps tutorial after installation.

About GRASS GIS

The Geographic Resources Analysis Support System (http://grass.osgeo.org/), commonly referred to as GRASS GIS, is an Open Source Geographic Information System providing powerful raster, vector and geospatial processing capabilities in a single integrated software suite. GRASS GIS includes tools for spatial modeling, visualization of raster and vector data, management and analysis of geospatial data, and the processing of satellite and aerial imagery. It also provides the capability to produce sophisticated presentation graphics and hardcopy maps. GRASS GIS has been translated into about twenty languages and supports a huge array of data formats. It can be used either as a stand-alone application or as backend for other software packages such as QGIS and R geostatistics. It is distributed freely under the terms of the GNU General Public License (GPL). GRASS GIS is a founding member of the Open Source Geospatial Foundation (OSGeo).

The GRASS Development Team, July 2015

QGIS 2.10 RPMs for Fedora 21, Centos 7, Scientific Linux 7

qgis-icon_smallThanks to the work of Volker Fröhlich and other Fedora/EPEL packagers I was able to create RPM packages of QGIS 2.10 Pisa for Fedora 21, Centos 7, and Scientific Linux 7 using the great COPR platform.

Repo: https://copr.fedoraproject.org/coprs/neteler/QGIS-2.10-Pisa/

The following packages can now be installed and tested on epel-7-x86_64 (Centos 7, Scientific Linux 7, etc.), and Fedora-21-x86_64:

  • qgis 2.10.1
  • qgis-debuginfo 2.10.1
  • qgis-devel 2.10.1
  • qgis-grass 2.10.1
  • qgis-python 2.10.1
  • qgis-server 2.10.1

Installation instructions (run as “root” user or use “sudo”):

su

# EPEL7:
yum install epel-release
yum update
wget -O /etc/yum.repos.d/qgis-2-10-epel-7.repo https://copr.fedoraproject.org/coprs/neteler/QGIS-2.10-Pisa/repo/epel-7/neteler-QGIS-2.10-Pisa-epel-7.repo
yum update
yum install qgis qgis-grass qgis-python

# Fedora 21:
dnf copr enable neteler/QGIS-2.10-Pisa
dnf update
dnf install qgis qgis-grass qgis-python

Enjoy!

Sol Katz Award – Call for Nominations

The Open Source Geospatial Foundation would like to open nominations for the 2015 Sol Katz Award for Geospatial Free and Open Source Software.

The Sol Katz Award for Geospatial Free and Open Source Software (GFOSS) will be given to individuals who have demonstrated leadership in the GFOSS community. Recipients of the award will have contributed significantly through their activities to advance open source ideals in the geospatial realm.

Sol Katz was an early pioneer of GFOSS and left behind a large body of work in the form of applications, format specifications, and utilities while at the U.S. Bureau of Land Management. This early GFOSS archive provided both source code and applications freely available to the community. Sol was also a frequent contributor to many geospatial list servers, providing much guidance to the geospatial community at large.

Sol unfortunately passed away in 1999 from Non-Hodgkin’s Lymphoma, but his legacy lives on in the open source world. Those interested in making a donation to the American Cancer Society, as per Sol’s family’s request, can do so at https://donate.cancer.org/index.

Nominations for the Sol Katz Award should be sent to SolKatzAward@osgeo.org with a description of the reasons for this nomination. Nominations will be accepted until 23:59 UTC on August 21st (http://www.timeanddate.com/worldclock/fixedtime.html?month=8&day=21&year=2015&hour=23&min=59&sec=59).
A recipient will be decided from the nomination list by the OSGeo selection committee.

The winner of the Sol Katz Award for Geospatial Free and Open Source Software will be announced at the FOSS4G-Seoul event in September. The hope is that the award will both acknowledge the work of community members, and pay tribute to one of its founders, for years to come.

It should be noted that past awardees and selection committee members are not eligible.

More info at the Sol Katz Award wiki page
http://wiki.osgeo.org/wiki/Sol_Katz_Award

Past Awardees:

2014: Gary Sherman
2013: Arnulf Christl
2012: Venkatesh Raghavan
2011: Martin Davis
2010: Helena Mitasova
2009: Daniel Morissette
2008: Paul Ramsey
2007: Steve Lime
2006: Markus Neteler
2005: Frank Warmerdam

Selection Committee 2015:

Jeff McKenna (chair)
Frank Warmerdam
Markus Neteler
Steve Lime
Paul Ramsey
Sophia Parafina
Daniel Morissette
Helena Mitasova
Martin Davis
Venkatesh Raghavan
Arnulf Christl
Gary Sherman

Fun with docker and GRASS GIS software

GRASS GIS and dockerSometimes, we developers get reports via mailing list that this & that would not work on whatever operating system. Now what? Should we be so kind and install the operating system in question in order to reproduce the problem? Too much work… but nowadays it has become much easier to perform such tests without having the need to install a full virtual machine – thanks to docker.

Disclaimer: I don’t know much about docker yet, so take the code below with a grain of salt!

In my case I usually work on Fedora or Scientific Linux based systems. In order to quickly (i.e. roughly 10 min of automated installation on my slow laptop) try out issues of GRASS GIS 7 on e.g., Ubuntu, I can run all my tests in docker installed on my Fedora box:

# we need to run stuff as root user
su
# Fedora 21: install docker 
yum -y docker-io

# Fedora 22: install docker
dnf -y install docker

# enable service
systemctl start docker
systemctl enable docker

Now we have a running docker environment. Since we want to exchange data (e.g. GIS data) with the docker container later, we prepare a shared directory beforehand:

# we'll later map /home/neteler/data/docker_tmp to /tmp within the docker container
mkdir /home/neteler/data/docker_tmp

Now we can start to install a Ubuntu docker image (may be “any” image, here we use “Ubuntu trusty” in our example). We will share the X11 display in order to be able to use the GUI as well:

# enable X11 forwarding
xhost +local:docker

# search for available docker images
docker search trusty

# fetch docker image from internet, establish shared directory and display redirect
# and launch the container along with a shell
docker run -v /data/docker_tmp:/tmp:rw -v /tmp/.X11-unix:/tmp/.X11-unix \
       -e uid=$(id -u) -e gid=$(id -g) -e DISPLAY=unix$DISPLAY \
       --name grass70trusty -i -t corbinu/docker-trusty /bin/bash

In almost no time we reach the command line of this minimalistic Ubuntu container which will carry the name “grass70trusty” in our case (btw: read more about Working with Docker Images):

root@8e0f233c3d68:/# 
# now we register the Ubuntu-GIS repos and get GRASS GIS 7.0
add-apt-repository ppa:ubuntugis/ubuntugis-unstable
add-apt-repository ppa:grass/grass-stable
apt-get update
apt-get install grass7

This will take a while (the remaining 9 minutes or so of the overall 10 minutes).

Since I like cursor support on the command line, I launch (again?) the bash in the container session:

root@8e0f233c3d68:/# bash
# yes, we are in Ubuntu here
root@8e0f233c3d68:/# cat /etc/issue

Now we can start to use GRASS GIS 7, even with its graphical user interface from inside the docker container:

# create a directory for our data, it is mapped to /home/neteler/data/docker_tmp/
# on the host machine 
root@8e0f233c3d68:/# mkdir /tmp/grassdata
# create a new LatLong location from EPSG code
# (or copy a location into /home/neteler/data/docker_tmp/)
root@8e0f233c3d68:/# grass70 -c epsg:4326 ~/grassdata/latlong_wgs84
# generate some data to play with
root@8e0f233c3d68:/# v.random n=30 output=random30
# start the GUI manually (since we didn't start GRASS GIS right away with it before)
root@8e0f233c3d68:/# g.gui

Indeed, the GUI comes up as expected!

GRASS GIS 7 GUI in docker container

GRASS GIS 7 GUI in docker container

You may now perform all tests, bugfixes, whatever you like and leave the GRASS GIS session as usual.
To get out of the docker session:

root@8e0f233c3d68:/# exit    # leave the extra bash shell
root@8e0f233c3d68:/# exit    # leave docker session

# disable docker connections to the X server
[root@oboe neteler]# xhost -local:docker

To restart this session later again, you will call it with the name which we have earlier assigned:

[root@oboe neteler]# docker ps -a
# ... you should see "grass70trusty" in the output in the right column

# we are lazy and automate the start a bit
[root@oboe neteler]# GRASSDOCKER_ID=`docker ps -a | grep grass70trusty | cut -d' ' -f1`
[root@oboe neteler]# echo $GRASSDOCKER_ID 
[root@oboe neteler]# xhost +local:docker
[root@oboe neteler]# docker start -a -i $GRASSDOCKER_ID

### ... and so on as described above.

Enjoy.

GRASS GIS 6.4.5RC1 released

GRASS GIS logoAfter months of development a first release candidate of GRASS GIS 6.4.5 is now available. This is a stability release of the GRASS GIS 6 line.

Source code download:
http://grass.osgeo.org/grass64/source/
http://grass.osgeo.org/grass64/source/grass-6.4.5RC1.tar.gz

Binaries download:
http://grass.osgeo.org/download/software/#g64x

To get the GRASS GIS 6.4.5RC1 source code directly from SVN:
svn checkout http://svn.osgeo.org/grass/grass/tags/release_20150406_grass_6_4_5RC1

Key improvements:
Key improvements of the GRASS GIS 6.4.5RC1 release include stability fixes (esp. vector library), some fixes for wxPython3 support, some module fixes, and more message translations.

See also our detailed announcement:
http://trac.osgeo.org/grass/wiki/Release/6.4.5RC1-News

First time users should explore the first steps tutorial after installation:
http://grasswiki.osgeo.org/wiki/Quick_wxGUI_tutorial

Release candidate management at
http://trac.osgeo.org/grass/wiki/Grass6Planning

Please join us in testing this release candidate for the final release.

Consider to donate pizza or beer for the next GRASS GIS Community Sprint (following the FOSS4G Europe 2015 in Como):
http://grass.osgeo.org/donations/

Thanks to all contributors!

About GRASS GIS

The Geographic Resources Analysis Support System (http://grass.osgeo.org), commonly referred to as GRASS GIS, is an Open Source Geographic Information System providing powerful raster, vector and geospatial processing capabilities in a single integrated software suite. GRASS GIS includes tools for spatial modeling, visualization of raster and vector data, management and analysis of geospatial data, and the processing of satellite and aerial imagery. It also provides the capability to produce sophisticated presentation graphics and hardcopy maps. GRASS GIS has been translated into about twenty languages and supports a huge array of data formats. It can be used either as a stand-alone application or as backend for other software packages such as QGIS and R geostatistics. It is distributed freely under the terms of the GNU General Public License (GPL). GRASS GIS is a founding member of the Open Source Geospatial Foundation (OSGeo).

The GRASS Development Team, April 2015

Inofficial QGIS 2.8 RPMs for EPEL 7: Fedora 20, Fedora 21, Centos 7, Scientific Linux 7

qgis-icon_smallThanks to the work of Devrim Gündüz, Volker Fröhlich, Dave Johansen, Rex Dieter and other Fedora/EPEL packagers I had an easy going to prepare RPM packages of QGIS 2.8 Wien for Fedora 20 and 21, Centos 7, and Scientific Linux 7.

The base SRPM package I copied from Fedora’s koji server, modified the SPEC file in order to remove the now outdated PyQwt bindings (see bugzilla) and compiled QGIS 2.8 via the great COPR platform.

Repo: https://copr.fedoraproject.org/coprs/neteler/QGIS-2.8-Wien/

The following packages can now be installed and tested on epel-7-x86_64 (Centos 7, Scientific Linux 7, etc.), Fedora-20-x86_64, and Fedora-21-x86_64:

  • qgis 2.8.1
  • qgis-debuginfo 2.8.1
  • qgis-devel 2.8.1
  • qgis-grass 2.8.1
  • qgis-python 2.8.1
  • qgis-server 2.8.1

Installation instructions (run as “root” user or use “sudo”):

# EPEL7:
yum -y install epel-release
yum -y install wget
# https://copr.fedoraproject.org/coprs/neteler/python-OWSLib/
wget -O /etc/yum.repos.d/neteler-python-OWSLib-epel-7.repo https://copr.fedoraproject.org/coprs/neteler/python-OWSLib/repo/epel-7/neteler-python-OWSLib-epel-7.repo
yum -y update
yum -y install python-OWSLib
wget -O /etc/yum.repos.d/qgis-epel-7.repo https://copr.fedoraproject.org/coprs/neteler/QGIS-2.8-Wien/repo/epel-7/neteler-QGIS-2.8-Wien-epel-7.repo
yum update
yum install qgis qgis-grass qgis-python qgis-server

# Fedora 20:
wget -O /etc/yum.repos.d/qgis-epel-7.repo https://copr.fedoraproject.org/coprs/neteler/QGIS-2.8-Wien/repo/fedora-20/neteler-QGIS-2.8-Wien-fedora-20.repo
yum update
yum install qgis qgis-grass qgis-python qgis-server

# Fedora 21:
wget -O /etc/yum.repos.d/qgis-epel-7.repo https://copr.fedoraproject.org/coprs/neteler/QGIS-2.8-Wien/repo/fedora-21/neteler-QGIS-2.8-Wien-fedora-21.repo
yum update
yum install qgis qgis-grass qgis-python qgis-server

The other packages are optional (well, also qgis-grass, qgis-python, and qgis-server…).

Enjoy!

PS: Of course I hope that QGIS 2.8 officially hits EPEL7 anytime soon! My COPR repo is just a temporary bridge towards that goal.

EDIT 30 April 2015:

  • updated EPEL7 installation for python-OWSLib dependency

Compiling OTB Orfeo ToolBox software on Centos/Scientific Linux

The Orfeo ToolBox (OTB), an open-source C++ library for remote sensing images processing, is offering a wealth of algorithms to perform Image manipulation, Data pre-processing, Features extraction, Image Segmentation and Classification, Change detection, Hyperspectral processing, and SAR processing.

Since there is no (fresh) RPM package available for Centos or Scientific Linux, here some quick hints (no full tutorial, though) how to get OTB easily locally compiled. We are following the Installation Chapter.

Importantly, you need to have some libraries installed including GDAL. Be sure that it has been compiled with the “–with-rename-internal-libtiff-symbols” and ” –with-rename-internal-libgeotiff-symbols” flags to avoid namespace collision a.k.a segmentation fault of OTB as per “2.2.4 Building your own qualified Gdal“. We’ll configure and build with the GDAL-internal Tiff and Geotiff libraries that supports BigTiff files

# configure GDAL
./configure \
 --without-libtool \
 --with-geotiff=internal --with-libtiff=internal \
 --with-rename-internal-libtiff-symbols=yes \
 --with-rename-internal-libgeotiff-symbols=yes \
...
make
make install

The compilation of the OTB source code requires “cmake” and some other requirements which you can install via “yum install …”. Be sure to have the following structure for compiling OTB, i.e. store the source code in a subdirectory. The binaries will then be compiled in a “build” directory parallel to the OTB-SRC directory:

OTB-4.4.0/
|-- build/
`-- OTB-SRC/
    |-- Applications/
    |-- CMake/
    |-- CMakeFiles/
    |-- Code/
    |-- Copyright/
    |-- Examples/
    |-- Testing/
    `-- Utilities/

Now it is time to configure everything for OTB. Since I didn’t want to bother with “ccmake”, below the magic lines to compile and install OTB into its own subdirectory within /usr/local/. We’ll use as many internal libraries as possible according to the table in the installation guide. The best way is to save the following lines as a text script “cmake_otb.sh” for easier (re-)use, then run it:

#!/bin/sh

OTBVER=4.4.0
(
mkdir -p build
cd build

cmake -DCMAKE_INSTALL_PREFIX:PATH=/usr/local/otb-$OTBVER \
      -DOTB_USE_EXTERNAL_ITK=OFF -DOTB_USE_EXTERNAL_OSSIM=OFF \
      -DOTB_USE_EXTERNAL_EXPAT=OFF -DOTB_USE_EXTERNAL_BOOST=OFF \
      -DOTB_USE_EXTERNAL_TINYXML=OFF -DOTB_USE_EXTERNAL_LIBKML=OFF \
      -DOTB_USE_EXTERNAL_MUPARSER=OFF \
       ../OTB-SRC/

make -j4
# note: we assume to have write permission in /usr/local/otb-$OTBVER
make install
)

That’s it!

In order to use the freshly compiled OTB, be sure to add the new directories for the binaries and the libraries to your PATH and LD_LIBRARY_PATH variables, e.g. in $HOME/.bashrc:

export PATH=$PATH:/usr/local/bin:/usr/local/otb-4.4.0/bin
export LD_LIBRARY_PATH=/usr/local/lib:/usr/local/lib64/:/usr/local/otb-4.4.0/lib/otb/

Enjoy OTB! And thanks to the OTB developers for making it available.

New stable release of GRASS GIS 7.0.0!

The GRASS GIS Development team has announced the release of the new major version GRASS GIS 7.0.0. This version provides many new functionalities including spatio-temporal database support, image segmentation, estimation of evapotranspiration and emissivity from satellite imagery, automatic line vertex densification during reprojection, more LIDAR support and a strongly improved graphical user interface experience. GRASS GIS 7.0.0 also offers significantly improved performance for many raster and vector modules: “Many processes that would take hours now take less than a minute, even on my small laptop!” explains Markus Neteler, the coordinator of the development team composed of academics and GIS professionals from around the world. The software is available for Linux, MS-Windows, Mac OSX and other operating systems.

Detailed announcement and software download:
http://grass.osgeo.org/news/42/15/GRASS-GIS-7-0-0/

About GRASS GIS
The Geographic Resources Analysis Support System (http://grass.osgeo.org/), commonly referred to as GRASS GIS, is an open source Geographic Information System providing powerful raster, vector and geospatial processing capabilities in a single integrated software suite. GRASS GIS includes tools for spatial modeling, visualization of raster and vector data, management and analysis of geospatial data, and the processing of satellite and aerial imagery. It also provides the capability to produce sophisticated presentation graphics and hardcopy maps. GRASS GIS has been translated into about twenty languages and supports a huge array of data formats. It can be used either as a stand-alone application or as backend for other software packages such as QGIS and R geostatistics. It is distributed freely under the terms of the GNU General Public License (GPL). GRASS GIS is a founding member of the Open Source Geospatial Foundation (OSGeo).

Happy 9th Birthday, OSGeo!

Press release by Jeff McKenna, OSGeo Foundation President

9 years ago today was the first ever meeting of the OSGeo foundation, in Chicago U.S.A. (initial press release). Thanks to those passionately involved back then, and the thousands contributing since, now our community has expanded and has reached many countries all over world. Congratulations to everyone for continuing to share the passion for Open Source geospatial.

Here is a glimpse at some of the exciting events happening around the world this year:

GRASS GIS 7: Vector data reprojection with automated vertex densification

GRASS GIS 7 just got better: When reprojecting vector data, now automated vertex densification is applied. This reduces the reprojection error for long lines (or polygon boundaries). The needed improvement has been kindly added in v.proj by Markus Metz.

1. Example

As an (extreme?) example, we generate a box in LatLong/WGS84 (EPSG: 4326) which is of 10 degree side length (see below for screenshot and at bottom for SHAPE file download of this “box” map):

[neteler@oboe ~]$ grass70 ~/grassdata/latlong/grass7/
# for the ease of generating the box, set computational region:
g.region n=60 s=40 w=0 e=30 res=10 -p
projection: 3 (Latitude-Longitude)
zone:       0
datum:      wgs84
ellipsoid:  wgs84
north:      60N
south:      40N
west:       0
east:       30E
nsres:      10
ewres:      10
rows:       2
cols:       3
cells:      6
# generate the box according to current computational region:
v.in.region box_latlong_10deg
exit

Next we start GRASS GIS in a metric projection, here the EU LAEA:

# EPSG 3035, metric EU LAEA:
grass70 ~/grassdata/europe_laea/user1/
GRASS 7.0.0svn (europe_laea): >

Now we first reproject the map the “traditional way” (no vertex densification as in most GIS, here enforced by smax=0):

v.proj box_latlong_10deg out=box_latlong_10deg_no_densification
location=latlong mapset=grass7 smax=0

Then we do a second reprojection with new automated vertex densification (here we use the default values for smax which is a 10km vertex distance in the reprojected map by default):

v.proj box_latlong_10deg out=box_latlong_10deg_yes_densification
location=latlong mapset=grass7

Eventually we can compare both reprojected maps:

g.region vect=box_latlong_10deg_no_densification

# compare:
d.mon wx0
d.vect box_latlong_10deg_no_densification color=red
d.vect box_latlong_10deg_yes_densification color=green fill_color=none
Comparison of the reprojection of a 10 degree large LatLong box to the metric EU LAEA (EPSG 3035): before in red and new in green. The grid is based on WGS84 at 5 degree spacing.

Comparison of the reprojection of a 10 degree large LatLong box to the metric EU LAEA (EPSG 3035): before in red and new in green. The grid is based on WGS84 at 5 degree spacing.

The result shows how nicely the projection is now performed in GRASS GIS 7: the red line output is old, the green color line is the new output (its area filling is not shown).

Consider to benchmark this with other GIS… the reprojected map should not become a simple trapezoid.

2. Sample dataset download

Download of box_latlong_10deg.shp for own tests (1kB).